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Abstract

This paper presents a methodology of detect-
ing the exact emotion(s) in a sarcastic sen-
tence. Sarcasm arises from contextual incon-
gruity in a sentence and bears a surface sen-
timent which is different from the intended
sentiment. While the surface sentiment may
be positive, the intended sentiment is negative.
In general, sarcasm is associated with a neg-
ative emotion. The question is which nega-
tive emotion- anger, sadness, frustration, dis-
gust, or any other?. Previous works have ex-
tensively studied sentiment and emotion in lan-
guage, while the relationship between sarcasm
and emotion has been largely unaddressed. We
used recently released MUStARD dataset pre-
annotated with 9 emotions, and annotated it
with arousal and valence levels. Arousal and
valence are important to understand the degree
of emotion that led the speaker to use such fig-
urative language. Experimental results show
that our multimodal fusion models outperform
the existing state-of-art systems in terms of
emotion recognition. Exhaustive experimen-
tation with each features in a modality and
modality combinations is performed for both
emotion and arousal-valence prediction.

1 Introduction

Emotion understanding leads to a deeper insight
to the intent of the speaker. Detecting emotions
and sarcasm is crucial for all services involving
human interactions, such as chatbots, e-commerce,
e-tourism and several other businesses. Sarcasm is
a very sophisticated linguistic articulation where
the sentential meaning is often disbelieved due to
the linguistic incongruencies. While incongruity
is the key element of sarcasm, the intent could
be to appear humorous, ridicule someone, or ex-
press contempt. Thus sarcasm is considered a very
nuanced, or intelligent language construct which
poses several challenges to emotion recognition as
emotion could be completely flipped due to pres-
ence of sarcasm. Sarcasm often relies on verbal and

non-verbal cues (pitch, tone, emphasis in speech
and body language in video). Even for humans,
annotating the underlying emotion is challenging
without the audio/video or the context of the con-
versation. In this paper, we aim to understand the
exact emotion behind a sarcastic utterance. Since
MUStARD (Castro et al., 2019) is the only multi-
modal sarcastic dataset available and has only 345
sarcastic utterances, we show zero-shot emotion
recognition, while training models on other ex-
isting non-sarcastic datasets. The strength of an
emotion can be assessed by measuring valence and
arousal, valence indicating the extent to which the
emotion is positive or negative, and arousal measur-
ing the intensity of the emotion associated (Cowie
and Cornelius, 2003).

2 Related Work

Previous works have extensively studied sentiment
and emotion in language, while the relationship be-
tween emotion and sarcasm has been largely unad-
dressed. Most of the existing research has focused
on detection of sarcasm(Joshi et al., 2016, 2018).
Research studying the impact of sarcasm on sen-
timent analysis (Maynard and Greenwood, 2014)
showed that sarcasm often has a negative sentiment,
but the associated emotion(s) is important to frame
the response and followup communication.

In Chauhan et al. (2020), authors annotated the
MUStARD dataset with emotions and sentiment,
and showed that in a multi-task setting, the primary
task for sarcasm detection yielded better results
with the help of secondary tasks of emotion and
sentiment analysis. Since our study purely focuses
on the understanding the speaker’s emotion while
using sarcasm, we used their annotated basic emo-
tions, as well as annotate the dataset with arousal
and valence to understand the degree of emotion.
The arousal valence annotations had 3 indepen-
dent linguists as annotators with an inter-annotator
agreement of 73% (Kappa score).



3 Dataset

While there exist a few data sets for sarcasm detec-
tion (Riloff et al., 2013; Ptacek et al.), (Chauhan
et al., 2020) annotated the first multimodal sarcasm
detection dataset MUStARD (Castro et al., 2019)
for emotions (anger, sadness, happy, neutral, frus-
trated, anticipation, surprise, disgust and fear). This
data contains 345 sarcastic, and 345 non-sarcastic
video utterances, each utterance having one or two
contextual videos, which were considered by anno-
tators while annotating. MUStARD is a subset of
Multimodal Emotion Lines Dataset (MELD)(Poria
et al., 2018) which is the multimodal extension of
EmotionLines dataset (Chen et al., 2018). MELD
contains about 13,000 utterances from English TV-
series, labeled with one of the seven emotions
(anger, disgust, sadness, joy, neutral, surprise and
fear) and sentiment. EmotionLines (Chen et al.,
2018) is a textual data set comprising of 29,245 ut-
terances from the same series and private Facebook
messenger dialogues. However, both MELD and
EmotionLines did not have sarcasm labels. In this
paper, we used IEMOCAP (Busso et al., 2008) as
a multimodal emotion labeled dataset for pretrain-
ing each of our networks. IEMOCAP has 9 emo-
tions labeled, which are the same labels used by
(Chauhan et al., 2020) annotations of MUStARD.
We didnt use CMU-MOSEI (Zadeh et al., 2018)
for pretraining as the the CMU-MOSEI dataset is
labelled with 6 emotions and the number of high
confidence annotations is 40% of the total data. We
use MELD for finetuning the networks. Since 50%
of the data in MELD belongs to Neutral, we used
600 neutral samples, and all samples from rest of
the classes in our finetuning phase.

4 Proposed Methodology

Since sarcasm is expressed using several non-
verbal cues, we utilized the audio, video and text
modalities of MUStARD data for emotion under-
standing in sarcastic utterances. For all three modal-
ities we pretrain deep self-supervised models and
perform zero-shot prediction of emotion in MUS-
tARD. For fusion of the modalities, we used 2 lay-
ers of attention, one attention layer over each fea-
ture within a modality, and one attention layer over
modalities. The aim of using multiple attention lay-
ers is to establish the relationship and importance of
feature vectors obtained from the different modal-
ities for emotion recognition and arousal-valence
prediction.

4.1 Text Modality

For the text data, we obtained pretrained BERT (De-
vlin et al., 2018a) word embeddings for every utter-
ance using the BERT-Base model to get a unique
utterance representation of size 768. We finetuned
the network on IEMOCAP (?) and MELD (Poria
et al., 2018). We fine-tuned for 15 epochs using
AdamW optimizer(Loshchilov and Hutter, 2017)
with last 4 layers of the transformer freezed during
finetuning. At test, we perform zero-shot emotion
recognition on sarcastic utterances. The BERT
model for emotion recognition and arousal-valence
prediction is mostly same, except the last layer
which for the emotion recognition problem is a 9-
class classification problem, while arousal-valence
is a regression problem. For comparison we trained
several other models with different learned embed-
dings but BERT outperformed all of them.

4.2 Audio Modality

For audio, we used vocal separation to clean au-
dio data to remove background noise and canned
laughter. For our experiments, we finetuned self-
supervised state-of-the-art wav2vec2.0 network
(Baevski et al., 2020) which learns the latent repre-
sentation by masking the spans encoded via multi-
layer convolutional neural network on librispeech
audio corpus (Panayotov et al., 2015) enabling it
to learn generalized audio features. We finetuned
this network on IEMOCAP audio and MELD au-
dio and then tested it on full MUStARD dataset.
For comparison we also trained and tested another
popular multi-task self-supervised PASE+ model
(Pascual et al.)(Ravanelli et al.) with the same data,
but wav2vec2.0 outperforms PASE+ marginally.
Wav2vec2.0 uses contrastive loss (Oord et al.,
2018) and masked language modelling objective
similar to BERT (Devlin et al., 2018b) as compared
to a multi-task objective in Pase+, which helps in
focusing on the prosodic features in the finetun-
ing. For baseline audio experiments, we computed
low-level features such as MFCC (Mel-frequency
Cepstral Coefficient), spectrogram and prosodic
features and used them to show detailed ablation
study on importance of each feature for emotion
recognition.

4.3 Video Modality

For the video modality, we used deep residual net-
work ResNet-18 (He et al., 2016) which tackles
training issues by introducing identity skip-layer



connections that ensures that deeper network’s
training error cant be larger than its shallow coun-
terparts. We used IEMOCAP and MELD for fine-
tuning and tested directly on full MUStARD. Since
the results of RESNET-18 and RESNET-154 were
comparable, we continued with RESNET-18 due
to its faster training.

4.4 Multimodal Fusion

We used learned input representation from net-
works trained on each modality through a fully
connected layer and then to an inter-modality atten-
tion layer. We used an intra-modality attention only
for audio to understand the relative importance of
each feature as the audio model learns several deep
and low-level features such as MFCC, prosodic,
spectrograms etc.

5 Results

Table 1 shows the results of our zero-shot multi-
modal fusion model in comparison with (Chauhan
et al., 2020). In (Chauhan et al., 2020), authors
have used k-fold cross validation and tested us-
ing one-vs-rest strategy. We used one-vs-rest
but could outperform them without including any
MUStARD samples in our training, due to use
of deep semi-supervised models and similar con-
versational datasets for training. Although by us-
ing one-vs-rest, the accuracy is very high even for
classes with very few samples, the model does not
learn to predict exact emotion correctly for classes
with very few samples such as fear, disgust, or sur-
prise. Thus a multi-class classification is a better
approach to measure the model’s ability to predict
the exact emotion in sarcastic sentences.

Since MUStARD is the only dataset with sar-
casm and emotion and has only 345 sarcastic ut-
terances, we show zero-shot emotion recognition
on sarcastic utterances, while models are trained
on non-sarcastic conversational datasets. We did
perform some finetuning experiments with a sub-
set of the sarcastic utterance, but that leads in a
drop in overall precision, recall, Fscore due to the
variability and insignificant examples of each class
of emotion in the small sarcastic dataset. Table 2
shows the results of each modality and all combi-
nation modalities for emotion recognition task.

5.1 Error Analysis

Based on the error analysis on the ablation stud-
ies, we saw the audio model was performing better

than the text and video models alone. However, in
the audio model’s confusion matrix, we observe
confusion among happy and sad class, and frus-
tration and neutral class. Since happy and sad are
contrastive emotions, we performed in-depth er-
ror analysis and observed that for the misclassi-
fied happy audio segments, the spectrogram is very
similar to sad audio segments. We calculated the
word-overlap between happy and sad on the text
modality and saw no significant adjective overlap.
Therefore, it is expected that they should not be
confusing classes in text modality which is reas-
sured by the BERT model’s confusion matrix. In
the multimodal experiment, we saw the confusion
between happy and sad got completely eliminated,
while the confusion between frustration and neutral
is significantly reduced but not eliminated.

5.2 Modality-wise feature importance in
Fusion

We observed that audio modality gave best results
when learned in isolation and during multimodal fu-
sion. In terms of importance of modality based on
the attention scores, audio got highest importance
followed by text and then video. Intra-modality at-
tention helped us understand that in audio, MFCC
features were most important for emotion classi-
fication followed by prosodic and spectrograms.
Within prosodic features, loudness was the most
significant feature for Sadness, Anger, Anticipation,
Frustration, Happy and neutral (in order of signifi-
cance). For arousal-valence predictions, prosodic
features were most important followed by MFCC
in audio. Text features contributed more than the
spectrograms and the video features. In prosodic
features, loudness followed by harmonics-to-noise
ratio were the most important features before FO
and voicing features of the audio signal.

6 Conclusions

This paper provides a mechanism to predict ex-
act emotion in sarcasm by using inter-modality
attention between text, audio and video modalities
in zero-shot setting. We predict basic emotions,
arousal and valence to understand the intensity and
polarity of the associated emotion. Although the
individual components such as BERT or wav2vec
or RESNET have been used before, the method
of integrating known components for a challeng-
ing problem with very limited resources is the key
take-away of this paper.



Emotion Our Proposed ACL2020(Chauhan et al., 2020)
Precision | Recall | Fscore | Precision | Recall Fscore

Anger 82 69 74 74 85 79
Happy 79 84.8 77.6 67 79 71
Sad 66 62 64 68 82.3 74.5
Neutral 64.8 67 65.3 60.9 71.6 60.5
Frustrated 96 98 97 84.2 91.7 87.8
Anticipation 82 69 74 94 97 96.1
Surprise 93 95 94 91 95.8 93.7
Fear 96 98 97 95 97 96
Disgust 90 92 91 89 94.3 91.6

Table 1: Comparison of Zero-shot Emotion Recognition on MUStARD dataset using one-vs-rest. Only difference
is we used the full MUStARD as test and could still outperform the state-of-art, while in (Chauhan et al., 2020)
authors used k-fold cross validation thereby training their system on part of the MUStARD data. Since in one-
vs-rest, correct predictions in rest class increases the fscore, the classes with very few samples (surprise, fear,
disgust) also have a high score for both systems, although the system does not perform well in predicting the
exact emotion(s). But our system outperforms significantly on classes with more samples (anger, happy,
neutral and frustrated - main sarcastic emotions) by predicting the exact emotion correctly due to the feature
learning of BERT and wav2vec.

Text Audio Text+Audio Video T+A+V
P R F1 P R F1 P R F1 P R F1 P R F1
Anger | 0.16 | 0.06 | 0.09 0.33 | 0.28 | 0.30 0.42 1 0.29 | 0.34 0.16 | 0.63 | 0.26 0.19 | 0.06 | 0.09
Sad 0.35 1 0.14 | 0.20 0.37 | 0.44 | 0.40 0.37 | 0.71 | 0.49 0.00 | 0.00 | 0.00 0.21 | 0.13 | 0.16
Happy | 0.34 | 0.09 | 0.10 0.38 |1 0.17 | 0.24 0.00 | 0.00 | 0.00 0.00 | 0.00 | 0.00 0.13 | 0.06 | 0.08
Neutral | 0.28 | 0.35 | 0.31 0.43 | 0.65 | 0.52 0.49 | 0.55 | 0.52 0.40 | 0.29 | 0.34 0.25 | 0.01 | 0.02
Fru 0.10 | 0.22 | 0.14 0.36 | 0.05 | 0.13 0.41 | 0.26 | 0.32 0.09 | 0.06 | 0.07 0.08 | 0.52 | 0.13
Ant 0.05 | 0.25 | 0.09 0.00 | 0.00 | 0.00 0.44 1 0.26 | 0.32 0.01 | 0.06 | 0.02 0.04 | 0.19 | 0.06
Surprise | 0.30 | 0.22 | 0.21 0.38 | 0.40 | 0.36 0.39 | 0.42 | 0.37 0.16 | 0.19 | 0.16 0.19 | 0.10 | 0.08
Fear 0.30 | 0.22 | 0.21 0.38 | 0.40 | 0.36 0.39 | 0.42 | 0.37 0.16 | 0.19 | 0.16 0.19 | 0.10 | 0.08
Disgust | 0.30 | 0.22 | 0.21 0.38 | 0.40 | 0.36 0.39 | 0.42 | 0.37 0.16 | 0.19 | 0.16 0.19 | 0.10 | 0.08
Acc 20.75% 26.99% 34.01% 19.29% 10.15%

Emotion

Table 2: Results of Zero-shot Multiclass Emotion Classification on MUStARD for all modalities and their com-
binations. Results show wav2vec audio models best capture features for emotion, and audio-text model resulted
in best results. (Note: P = precision, R= recall,F1= fscore,Fru= Frustrated, Ant= Anticipation, Acc= Accuracy of
model)

Text Audio T+A (‘ijéf‘é) T+A+V
Dimension | Test Set | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
Overall | 0.186 | 036 | 0.19 | 036 | 0.14 | 028 | 026 | 037 | 030 | 0.43
Arousal | Non-Sarc | 0.18 | 035 | 020 | 036 | 0.11 | 022 | 015 | 028 | 0.19 | 034
Sarcastic | 0.183 | 036 | 0.18 | 0.368 | 0.19 | 035 | 0.36 | 046 | 0.43 | 051
Overall | 020 | 037 | 020 | 037 | 018 | 037 | 0.17 | 036 | 0.12 | 029
Valence | Non-Sarc | 0.24 | 041 | 024 | 047 | 0.19 | 039 | 0.17 | 036 | 0.11 | 027

Sarcastic | 0.16 | 032 | 0.16 | 0.32 | 0.18 | 0.35 | 0.18 | 0.36 | 0.13 | 0.29

Table 3: Zero-shot Arousal and Valence prediction results on MUStARD in terms of Mean-squared error (MSE)
and Mean-Average Error (MAE). Arousal prediction is slightly easier in non-sarcastic sentences as expected. Va-
lence prediction for sarcastic utterances is observed to be easier than non-sarcastic sentences due to high variability
in valence of non-sarcastic sentences (both positive and negative values, versus low variability for sarcastic valence
(mostly negative).



Ethical Considerations

This work can be deployed in real systems such
as chatbots in e-commerce or other businesses
wherein customer experience is of critical impor-
tance to both understand their emotions and re-
spond accordingly. If the system works fine, it
benefits the industry using it, but if it misclassifies
it doesn’t harm the user or the company as misclas-
sification would not mean that the bot can reply
harshly, and is equivalent of not having an emotion
recognizer. The inference is real-time thus no data
need to be stored and there is no potential misuse
or harm from this system.
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